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In Davidson and MacKinnon (1981). two of the present authors proposed a novel and very 
slmple procedure for testing the spuiGcation of a nonlinear regression model against the 
evidence provided by a non-nested alternative. In this paper we extend their results in several 
directions. First, wc relax a n u m k  of the assumptions of the previous paper, we admit the 
possibility that the nonliacar regression functions m a y  depend on lagged dependent variables, 
and we do not require that the error terms be normally distributed. Second, we show how the 
earlier procedure may straightbwardly be generalid to the case where the two non-nested 
models involve diRrrent transformations of the dependent variable. Finally, we propose a simpk 
procedure for testing non-nested Linear regression modcls which have endogenous variables on 
the right-hand side, and have therefore been estimated by two-stage least squares. 

1. Introduction 

In recent years several procedures have been proposed for testing the 
specification of a nonlinear regression model against the evidence provided 
by a non-nested alternative hypothesis, The first such tests were due to 
Pesaran (1974) and Pesaran and Deaton (1978), and were explicitly based on 
the classic work of Cox (1961, 1962). More recently, Davidson and 
MacKinnon (1981) proposed much simpler procedures based on artificial 
regression models, and showed the resulting tests are asymptotically 
equivalent to Cox tests. Indeed, White (1982) has shown that if one 
implements the Cox test in a straightforward fashion, one of the procedures 
of Davidson and MacKinnon is obtained directly. For a survey of this 
material, see MacKinnon (1982). 

*Davidwn and Mnd(innnn graIduUy acknowledge financial support for the research of this 
p a p  from the Social Scienas and Humanities Research Council of Canada, white’s 
panidpation was supponed by NSF grant JEs81-07552 and MacKinnon and White thank Ian 
Domowitz for numerous helpful discussons. 
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In this paper we extend the results of Davidson and MacKinnon (1981), 
hereafter referred to as DM, in several directions. Most importantly, we relax 
the relatively restrictive assumptions of that paper. In particular, we allow 
the nonlinear regression functions to depend on lagged dependent variables, 
and we do not require that the error terms be normally distributed. In 
addition, we show how one of the procedures of DM may straightforwardly 
be generalized to the case where the two non-nested models involve different 
transformations of the dependent variable. Finally, we propose a simple 
procedure for testing non-nested linear regression models which have been 
estimated by two-stage least squares. This is also a straightforward 
generalization of one of the procedures suggested by DM. 

2. The J test, the P test and an extension 

single-equation, possibly nonlinear regression model, 
DM considered the following situation. The hypothesis to be tested is a 

H o  :Yt=f,(X,,/3)+Eorr (1) 

and the alternative model is 

Hi : Yi=gdzi,Y) + E I ~  (2) 

Here X ,  and Z ,  represent the tth observations on vectors of exogenous 
variables, where the index t runs from 1 to n, /3 and y are respectively a 
k-vector and an hector  of parameters to be estimated, and E,, is assumed to 
be NID(0,cr;) if H, actually generated the data. There are certain further 
technical assumptions, which are stated in DM (pp. 784-785). In section 3 
below we will substantially weaken the assumptions just stated on Ho and 
H I ;  for the moment, however, we will retain those of DM. 

All of the tests in DM are based on the artificial compound model 

H,: Y, = (1 -a)f;(x,, 8) f w,(Z,, u)  + E,. (3) 

By itself this model is not very useful, since a, /3 and y will generally not be 
identifiable. DM therefore suggested that y be replaced by 9, its least squares 
estimate, and showed that the t-statistic on i is asymptotically N(0,l) when 
H ,  is true. They called this test the J test, because a and p are estimated 
jointly. 

The J test is clearly extremely easy to perform so long as H ,  is a linear 
regression model (see-st ion 4 below). However, when H i  is nonlinear, so is 
the J test regression. To avoid the computational problems this may cause, 
DM suggested that this regression be linearized about the point (/3=B, a=O), 
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to yield 

y, -I= ag, -a + P,b + E,, (4) 

where Fc is row vector containing the derivatives of I, with respect to b, 
evaluated at B, and 6 is a vector of regression coefficients. It is easy to see 
that the t-statistic on ti from (4) is 

(J - ~ = & i o g - ~ / 6 ( g - ~ r ~ o ~ - ~ ) * ,  ( 5 )  

where y, f and g are vectors whose tth components are y,, I: and g, 
respectively, 6 is the estimated standard error from (4), and 

&io = I -P(ETF)- 'pr, (6) 

where E is the matrix whose tth row is P,. 

tends in probability to 
Under the assumptions of DM, it is fairly easy to show that under Ho (5) 

m o k !  --f)bo(k -f)TMok-f))*, (7) 

where quantities without hats are evaluated at Bo, the true value of B, or at 
yo, the plim of f under H,. It is obvious that (7) is N(O.1). Because of the 
role played by the projection matrix M, in (5), DM called the test based on 
(4) the P test. 

In many applied cases, alternative non-nested models will utilize different 
transformations of the dependent variable. For example, the regressand 
might be logy,, expy,, yf or Wy, where U: is some exogenous variable. The 
P test as derived above cannot he applied to such cases. Let us therefore 
consider the situation where Ho is still given by eq. (l), but the alternative 
model is now 

H1: h,(Y,)=g,(Z,,Y)+E,,, (8) 

where h,( - )  may be any monotonic, continuously differentiable function 
which does not depend on any unknown parameters. There is obviously no 
loss of generality in assuming that y, itself appears on the left-hand side of 
(I), since y, can always be redefined appropriately. 

Now consider the artificial compound model 

H,: (1 -a)o1,-II(B))+or(h,(~,)-g,(y))=&,, (9) 
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where the dependence of f, and gr on X, and 2, has been suppressed for 
notational convenience. If y were replaced by 7 this model could presumably 
be estimated to yield some sort of J test, but a highly nonlinear maximum 
likelihood procedure would have to be used, since the loglikelihood function 
would contain a Jacobian term as well as a sum of squares term. Simply 
taking a Taylor series approximation around (S-B, a=O), as in the P test, 
will not yield a valid test, however. The derivative of the left-hand side of (9) 
with respect to a, evaluated at @,O), is 

--Y, +X+ht(Yr)-t?c> (10) 

so that a straightforward P test regression would have terms involving yr on 
the right-hand side. But this problem can be avoided if we replace y, by f: 
whenever it appears on the right-hand side, an idea which was utilized in a 
related context by Andrews (1971). Following this procedure, we obtain the 
artificial regression 

r 
Yr-X=agr-hr(f;))+ f rb+Er ,  (11) 

which is a rather elementary generalization of the P test regression (4). We 
shall therefore refer to this procedure as the extended P test or P, test. 

The principal merit of the P, test is simplicity; it certainly cannot be 
expected to have any optimality properties. This is so for two reasons. First, 
the P, test is not a Lagrange Multiplier test based on the compound model 
(9) with 7 replaced by f, and can therefore be expected to have less power 
than LM, Wald or LR tests based thereon. Secondly, the artificial compound 
model (9) is not equivalent to an exponential combination of the likelihood 
functions corresponding to H, and HI, so that LM, Wald and LR tests 
based on H, will not be asymptotically equivalent to Cox tests [see Atkinson 
(1970)l. Thus the P, test is two steps removed from a Cox test. However, our 
experience with the test suggests that it often has plenty of power in applied 
situations, so that its theoretical deficiencies may be of small consequence to 
applied workers who find its simplicity appealing. 

3. Validity of the tests under weak conditions 

In this section we prove that the P and P, tests are valid under much 
weaker conditions than those imposed by DM. We make extensive use of the 
following martingale central limit theorem, for which we provide a proof in 
the appendix. This theorem is very useful for many econometric applications. 

Theorem 1.  Define Q n t ~ ( Q m c l  ,..., Q.,,,) and let (Q.,} and {E , }  be 1 x p  and 
1 X 1 srochastic processes such that, for each n z  1, 
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E ( Q ~  1 Q..,- T . ., Q.T&,)=o, t = 1,. . ., n, 

E ( ( E : Q . , ~ Q ~ , ~ J I + ~ ) = < ~ < ~ ~ .  for some S > O ,  i , j = ~  ,__., p ,  

and all t = l ,  ..., n, 
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We are now ready to state formally the assumptions we shall need. We are 
interested in hypotheses about 

Eo?, I Yr- 19yr-2,. . .; % W- 1,. . .X (12) 

where y1 denotes the tth observation on a dependent variable and W, denotes 
the tth vector of observations on exogenous variables. Thus (12) is just the 
mean of y, conditional on its own past and on the past and present of w; we 
may write it more compactly as E(yll.Fr), where 9, is the a-algebra 
generated by ( ~ , - ~ , y ~ - ~  ,... ; Y, ct: -,,... ). The hypothesis we wish to test is 
that 

HO:E(Y, l.Fr)=.L(Xt,B, (13) 

where XI denotes a vector of m0 elements, selected from some of the yI-:s 
(iz 1) and some of the W-ts (iZ0). An alternative hypothesis is that 

Hi :E(h(y3 Igt)=gi(Zt,~), (14) 

where h,(y,) is a known function of y, and Z, denotes another vector of m, 
elements including some of the y,-,'s and some of the W-,'s. The 
assumptions we shall require are extensions of those introduced by 
Domowitz and White (1982): 

(Al l  W r  I ~J=f;(Xt,BoX 
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We may denote y, - f , (X, ,P, )  as E,, dropping the zero subscript for 
convenience. 

(a) There exist domains X c R m 0  and ZcRml  such that, for each x 
in X or z in Z, f t (x ,  8) and g,(z,y) are continuous functions of f l  or y 
uniformly in t almost surely, and measurable functions of x or z for 
each P in B or y in r; B and r are compact subsets of R or R', 
where k and I are finite. 

(b) h,(y) is monotonic and continuously differentiable in y. 

(a) { ( ~ ; - - f r ( X , ,  PI)'} and {(h,(y~)-gr(Zr,~i))z} are dominated by 
uniformly (rl +&integrable functions, r1 2 1, 0<6Srl .  

(b) {(h,(f,(X,,p))-g,(Zr,y))2) is dominated by uniformly (rl +a)- 
integrable functions, rlh 1, 0 < 6 s r l .  

Define 

Let Bo and 7; be identifiably unique minimizers of 6;" and O f ,  
respectively, such that bo is interior to B and y.* is interior to r 
uniformly in n. 

f,(x,j) and g,(z,y) are twice continuously differentiable in P or y 
uniformly in t as.  

{C(Y,  - f , ( X , ,  P))?f,(X,, PllWilz} and {[MY,) -g,(Z,, ?))dg,(Z,, Y)/*IJ'} 
are dominated by uniformly r,-integrable functions, r2 > 1, i= 1,. . .. k 
or i = l  ...., 1. 

Define 

where V7gr is the [ x  1 vector with elements dgl(Zr,y)/8yi, i =  I , . . . , / .  
Let there exist an I x 1 matrix B9 such that det B9>0 and iT&2 
-i.TB8i+0 as n+m uniformly in a for d1 real non-zero 1 x 1 
vectors h 

I 
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(A8) (a) {(aft(xt, B ) / ~ b i N ~ f t ( X r ,  B)/aPj)-@t-f,(X,. P))?%(X,, /J ) lZPi?/J j ]  
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and {(&,(Z,, Y)l~yi)(&,(zt3 WT j ) - ( M Y d  - g,(Z,, y))?'g,(Z,, y)i?ti?;jj 
are dominated by uniformly (rl + 6)ktegrable functions, r l  2 1, 
0 < 6 s r l ,  i , j =  1 ,..., k(0. 

(b) {(Jh,(f,(X,, b))/Jy)'} is dominated by uniformly (rl ++integrable 
functions, rlzl ,  0 < 6 g r l .  

(c) {(JJCX,, BMJBi)'} and {(WZ,, v)lJyJ') are dominated by 
uniformly (rl +&integrable functions, r,z 1, O t h s r , .  i =  1 ,_.., k(0.  

The Hessian matrices V't$,,,(B) and V*&(y) have constant rank in 
some open neighborhood of Bo or for all n sufficiently large, 
uniformly in n. 

(A9) 

(A10) There exists 6>0 and d<co such that and EI(h,(y,) 
-g,(Z,,y.*))411+6$ A for all t. 

(Al l )  The random vectors {y, ,X, ,Z,}  are either (a) &mixing of size 
r2/(rZ - 1) or (b) a-mixing of size max [rl/(rl - l), r2/(r2 - I)], 
rl ,r2> 1, where the mixing coefficients are defined with respect to 
the u-algebras generated by (y,, X,, 2,). 

X 

'Y 

We remark that conditions A2(b), A3(b) and A8(b) are always satisfied when 
h,(y)=y.  Conditions Al-A4 and A l l  ensure the consistency of 6" for Po and 
j,, for * Conditions Al-A8@), A9 and A l l  ensure the asymptotic normality 
of J$jm-j,,) and A(?"-$). Conditions AS(c) and A10 are additional 
conditions needed to ensure the asymptotic normality of the P test statistic. 
For more details on the mixing conditions of A l l  and the definitions'of 
identifiable uniqueness and uniform (rl + 6)-integrability, see White and 
Domowitz (1981) and Domowitz and White (1982). For a discussion of the 
interpretation of these conditions in the context of misspecified nonlinear 
regression models, see Domowitz and White (1982). 

We are now ready to prove that the P and P, test statistics are 
asymptotically distributed as N(0,l) under H, .  We begin by considering the 
simpler case of the P test. 

Theorem 2. Under assumptions AI-AI l ,  

(y-J)7M0@ -f)/i(g -f)'fi,(k -f))* 5 N(0, I ). 
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provided that for some c>O and all n suficiently large 
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d E ( ( R  -fIT(g - f ) / n )  - E(&- f)'F/n) E(FTF/n)- E ( F T k  - / ) / n )  

'0,2&. (18) 

Condition (18) ensures that n - )  times the numerator of the statistic does not 
have a degenerate distribution. This condition is an extremely important one, 
and it can be violated in certain unusual cases. In particular, if the Ha and 
HI models are orthogonal, so that E(FTC/n) is a zero matrix, condition (18) 
will not be satisfied. Thus we are explicitly ruling out this and certain other 
even more unusual cases; see DM, footnote 3. For further discussion, see 
Aguirre-Torres and Gallant (1982). 

Proof. Consider first the numerator of the test statistic. The first-order 
conditions for nonlinear least squares estimation ensure that (y-fi'F=O, so 
that 

By the mean value theorem of Jennrich (1969, lemma 3), given A4 and A5, 
the right-hand side of expression (19) is equal to 

where fP=L(Xr,Bob g?=gr(zr,;t). J=f,(Xr,BJ, &=gt(Zr,Y,), and V X  and r.Cr 
are row vectors whose ith elements are respectively af,(X,,fi)/aP, and 
ag,(Zt,y)/Jy, evaluated at 8. and f,,; the point (B,,TJ being somewhere on a 
line segment connecting (&,f,J and (&,y:). The expansion applies for a 
sequence tail-equivalent to (&,fa), but we maintain the same notation for 
convenience. 

Now we know that 
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given A1-A4 and A l l ,  by Corollary 3.1 of Domowitz and White (1982). 
Assumptions A3, A8 and A1 1 ensure that Theorem 2.5 and then Theorem 2.3 
of Domowitz and White (1982) apply, yielding the following results: 

The expectations in the second summations of (22) and (23) vanish by Al; 
hence the first summations tend to zero as. Given AI-A8(b), A9 and A l l ,  
$(/?,-So) and ,,h(f.-y:) are O,(l) as a consequence of Corollary 3.3 of 
Domowitz and White (1982). Hence, by 2c.4(x.a) of Rao (1973), which treats 
products of random sequences, the last two Ienns of (20) vanish in 
probability. 

Further, the leading, O,,(l), term in &(/?.-&) is given by the fact that 

(24) 
P J;;(B.-Bo)-[E(F'F/n)]-'n-f Vf PTel -, 0, 

* = 1  

by use of Al-A8(b), A9, and A l l .  It then follows from the result 2c.4(xiv) of 
Rao (1973), which deals with continuous functions of random sequences, that 
the above results imply 

We now turn our attention to the denominator of the test statistic. 
Consider the quantity 

ht =(1/n)6ig-J)'fi0g - J )  

= 6; [@-fl@ - f u n  -(g - f)'f/n)(fTf/n)- ' (frg - f)/n))}.. (26) 

Given the domination conditions of A3 and A8, repeated application of 
Theorems 2.5 and 2.3 of Domowitz and White (1982), followed by 
JE- C 
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application of Lemma 3.2 of White (1980), implies that (hi -63;); 0. Since by 
(18) 63fzc for all n sufficiently large, it follows from 2c.4(xiv) of Rao (1973) 
that 

-f(Y -A% -f74 
- n - f f ( 1 /rjJ[(g: - J p )  + E((f - g)'F/n)E(F'F/n) - I V'p] E ,  50. (27) 

Moreover, it follows from 2c.4(x.d) of Rao (1973) that the two quantities in 
(27) have the same asymptotic distribution. This distribution will now be 
computed for the second term. 

r = 1  

Define the scalar 

Q, = (1 /4)W - f PI  + E U  - g) ' F/n) E(F'F/n)- V'pI, (28) 

and consider the distribution of 

" 
n-i  1 Q.A (29) 

t =  1 

which is the second term of (27). By AI, E(Qnr&,I Q , , , , - i ~ - l , .  .., Q.o~o)=O for 
r= l ,  ..., n and each nh 1. Further, by the definition of a,, var(n-tx:=l e,&,) 
= I .  Given A3, A8 and A10 it can be verified that E(IQ:,$ll+d)Sd<m for 
some 6>0. Assumptions A3, A8 and A l l  allow the strong law of large 
numbers for mixing sequences of McLeish (1975, lemma 2.9) to be applied, 
ensuring that m-lC;"=l Q , $ $ - E ( Q ~ c ~ ) ~ O  as nzrn-rco. Thus the conditions 
of Theorem 1 are satisfied, and we conclude that 

n 

(30) 
A 

n-f  1 Q,,&,-N(O, 1). 
r = I  

From (27) then, 

n-*(y-f)'(i-f)/(s. N(0,l). (31) 

The quantity on the left of (31) is simply the P test statistic, (3, in a slightly 
different guise. Hence Theorem 2 is proved. 

The extension of the above proof to the P, test statistic is straightforward. 
We shall merely state the more general result. 

Theorem 3. Under assumptions A I- A l l ,  

( Y - - n . h 3 0 ~ - ~ ) / ~ o ( ( g - - r ~ , ~ - - ) f  $NN(O. I), 
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provided rhat for some c>O and all n sufficiently large 

u ~ @ - 6 ) r f i o g - 6 ) - c > ~  as.  
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Here h denotes the vector whose tth component is h,(f;) .  The proof of 
Theorem 3 parallels that of Theorem 2, with (g-6) replacing g-f) 
throughout; it is therefore omitted. 

4. A test for modeis estimated by two-stage least squares 

Up to this point we have assumed that the right-hand side variables X, 
and 2, are contemporaneously uncorrelated with the errors E, of the true 
model. But the basic idea of the J test can be applied to situations where this 
assumption does not hold. In this section we describe how the test may be 
modified to handle this situation, and prove that the modified test is valid 
asymptotically. One reason this is worth doing is that recent papers by 
Ericsson (1982) and Godfrey (1982) have proposed adaptations of the COX 
test to handle models estimated by ZSLS, and these modified Cox tests are 
inevitably much more cumbersome than a modified J test. 

For simplicity, we restrict ourselves to the case of linear models. The two 
non-nested models may be written as 

H o : y = X S + + ,  (32) 

and 

H , : y = Z y + & , ,  (33) 

where the matrix notation we employ is standard. Some of the columns of 
the X and Z matrices may be correlated with E ~ ,  the error terms of the true 
model. Thus OLS estimation is inappropriate. However, there is assumed to 
exist a matrix of instruments, with the usual properties, so that 2SLS 
estimation is feasible. In contrast to the notation of the previous section, 
W can now contain lagged dependent variables in addition to exogenous 
variables, here denoted by the matrix Q. Our assumptions about X, Z, W 
and eo will be stated formally below. 

We are explicitly assuming that both competing hypotheses specify the 
same matrix of instruments. This assumption is somewhat restrictive, but is, 
we believe, a good one, even though it is entirely possible to devise tests 
based on more general assumptions. Such tests would have the undesirable 
property that their results might depend on which instruments were 
associated with each hypothesis, rather than on the specifications of Ho and 
HI themselves. Moreover, our assumption makes it impossible for the 
applied worker to treat the same variables as exogenous in one model and 
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endogenous in the other, an error which could easily cause non-nested tests 
to yield misleading results. 

Two-stage least squares estimates of H o  and H, may be obtained by OLS 
estimation of 
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and 

Y = P w Z y + e , ,  (35) 

where Pw= W(WTW)-'WT.  These 2SLS estimates are 

and 

j = ( Z T P w 9 -  'Z'P,y. (37) 

In order to calculate the 2SLS J test statistic, we presumably wish to 
estimate the equation 

y = X p + a Z $ + &  (38) 

by 2SLS [where now p = ( l - a ) f l .  This may be done by OLS estimation of 

y = P w X P + a P z w y + e ,  (39) 

where P,,= PWZ(ZTPwZ)- 'ZrP , .  If we multiply both sides of (39) by 
M x w = I - P w X ( X T P w X ) - ' X f P w ,  we obtain 

M x w  y = aMxwPzwy + e'. (40) 

By standard results, the estimate of a and of its standard error from (40) are 
identical to those from (39), except for degrees of freedom corrections. Thus 
we see that the t-statistic on i is 

y'PzwMxwyl(~(Y'PzwM,wPzw)f) ,  (41) 

where 6 denotes the usual 2SLS estimated standard error from (39). We now 
wish to prove that, under appropriate conditions, the test statistic (41) is 
asymptotically N(0,i). 

Our first assumption expresses H, more formally: 
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(Bl) It is known that for finite Po and no 

E(Y, I Yr-i,Yr-2,...; Q n Q t - 1 7 .  .. )= Yno8o. 

where U: is a row vector whose components are some of the y,-i's. 
iz  1, and some of the Q,-;s, i20. By definition, 

Defining e, as y,- Qt,B,,, it is also known that 

E(e:IW=u,.  2 

The next condition imposes the moment conditions used to ensure the 
consistency and asymptotic normality of the 2SLS estimators: 

(B2) (a) (Z:} and {X:} are uniformly (rl+b)-integrable, r lB1 ,  O < b s r l ;  

(b) { W:} and {e:} are uniformly (rl +&integrable, r, 2 1, 0 < 6 s r l .  

The following condition ensures that both models are identified 

(B3) There exists c>O such that, for all n sufficiently large, 

det E(W'W/n)zc, 

det E(X'W/n)E(W'W/n)-'E(W'X/n)Lc, 

det E(Z'W/n)E( W'W/n)- I E( W'Z/n) 2 c, 

where U: X and Z are the matrices with rows W,, X, and Z,, 
respectively. 

The final assumption imposes restrictions on the memory of the random 
sequences considered 

(B4) The random vectors {y,U:,X,,Z,} are either (a) &mixing of size 
rL/(2r1 - 1) or (b) a-mixing of size rl/(rl - l), rl > I. 

Theorem 4. Under assumptions Bl-B4, 
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provided that, for some c>O and all n sufficiently large, 
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d2(yr P,,MxwPzwy/n)-c > O  as. 

Praof: First consider the numerator, yrPZwMXwy.  Provided that W'Z/n 
-E(W'Z/n), W'W/n-E(W'W/n), W'X/n-E(W'X/n) and Wre/n all tend 
to zero in probability, which is ensured by B1, B2 and B4; provided that B3 
holds; and provided that n - f x ; = ,  WTe, is OJI), which is ensured by B1 and 
B2; it follows that 

& Y ' ~ z w M x w Y - ~ - ~  I = '  i Q:te,50, 

where 

Qzt jgE(XT W/n)E( W'W/n)- 'E( W'Z/n) 

[E(Z' W/n)E( W' W/n)- E( W 'Zln)] - 

E(Z' W/n)E( W' W/n)- { I - E( W 'X/n)  

[E(X'W/n)E(WTW/n)-'E(WTX/n)] 

E(X' W/n)E ( W T  W/n) - '1 W:. (42) 

Let di =var(n-*x:=, Q;,e,). Then assumptions B1-B4 ensure that 6.' 
= 62(y'P,wMx,PZwy/n) is consistent for 6.2 by repeated application of 
Lemma 2.9 of McLeish (1975) and Lemma 3.2 of White (1980). 

Since di>c for all n sufficiently large by assumption, it follows from 
2c.4(xiv) of Rao (1973) that 

(43) 
P 

&yrpzwMx~v/4--n-f i Q.,e,- 4 
1 = 1  

where Q.,EQ;& It follows from 2c.4(x.d) of Rao (1973) that the two 
quantities in (43) have the same asymftotic distribution. 

We now show that n -+x ;= l  Q,e,-N(O, 1) by verifying that the conditions 
of Theorem 1 hold. By B1, E(Q,,el(Qm+t-leI-l ,..., Qaoeo)=O. Next, by the 
definitions of Q., and d;, var(n-fzr=,,  Qm,et)= 1. Given B2 it can be verified 
that E(IQite:ll+d)$i<cc for some S>O. Finally, 

by Lemma 2.9 of McLeish (1975), given assumptions BI-B4. We therefore 
conclude that both quantities in (43) are asymptotically N(O,1), which 
Completes the proof. 



J.G. MacKiMon et al., Tests for model spec$cntion 67 

5. Conclusion 

We have shown that the model specification tests of DM are valid under 
quite general conditions. The P test may be applied to dynamic nonlinear 
regression models whose error terms are serially uncorrelated and 
homoskedastic, and obey weak moment conditions. We have proposed an 
extension of the P test, the PE test, which may be used under similar 
conditions when the dependent variable is transformed differently in the H, 
and H, models, We have also shown that a procedure which is 
computationally identical to the J test, except that 2SLS replaces OLS 
throughout, may validly be used when the competing hypotheses are linear 
models with endogenous variables on the right-hand side. Thus these tests 
are widely applicable as well as computationally convenient. 

Appendix 

a functional central limit theorem for triangular martingale arrays. Define 
In this appendix we prove Theorem 1. We apply Scott's (1973) Theorem 2, 

sf(n) = E(Sf(n)), 

where A # O  is any real p x 1 vector. We show that 

for any I., so that the desired result follows from the Cramer-Wold device; 
see Rao (1973, 2c.4(xi)). 

We begin by verifying that Scott's conditions (c) [Scott (1973, p. 130)] are 
satisfied. These conditions are 

where m , ( ~ ) = m a x { m ~ n : s ~ ( n ) ~ 4 ) ;  that is, the largest index such that sf(n) 
is equal to or less than 4. 
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First, we verify (2). For any q>O, 

- i PCz:(n)> VI 
('1 

- I i E(lZ:(n)l'+6)/v'+d 
1 = 1  

[see, for example, Tucker (1967, p. 39,. theorem 211. From the definition of 
Z:(n), we have 

/1+3 E(lZ:(n)ll+a)= E(1 f f: i.ii.j&,2QnriQ.rj/(n(i.ri.)) 
i = i j = 1  

P P  i + a  - r .  i + a  5 ~ i j ~ i . i ~ . j ~ i + d ~ ~ ~ * ~ . , i ~ . r j ~ i + a / ~ n  0. A) ) 

_ < A  - f: , i j ( i . i ,~ l l+d / (n l+d ( i .T~) '+ ' ) ,  

i = 1 j = 1  

P 

i =1  j = l  

by repeated application of the ciinequality [Loeve (1963, p. 155)] and 
condition (a.2) of the theorem, where the pi j  are positive constants bounded 
above. Combining the above inequalities yields 

P sup Z:(n) > tl 5 A'(i.)/n', L. 1 
where 

d'(i.)=d f f p i j l i . i i . j l l + d / ( ( i . T i . ) ~ + ~ q l + ~ ) <  m, 
i=l j = 1  

and d'(L) is independent of n. Hence (2) holds. 

To verify (1) we successively establish that 



f 

J.G. MncKinnon et al, Tesrs for model speci/icorion 

Combining (3H5), with m replaced by m,($) in (4), we obtain (1). 
From (a.1) i t  follows that 

69 

m si(n)=(m/n)j.'(l/m) 1 E(&, 2 T  Q.,Q,,,)j./(j.'i.). 

t = 1  

Further, (a.2) guarantees that the eigenvalues of (l/m)I;=, E($Q;,Q.,) are 
uniformly bounded above. Hence there exists A* < w such that 

s,(n) <A*m/n = 

The function fi(n)smin(A*m/n, 1) never lies below sib), since si(n) is non- 
decreasing in m and $(n) = 1 given (a.3). Defining 

rii,(@)=max { m  5 n : $i(n)  4}, 

we see that mn(4)zmn(4) .  For 0 < 4 < 1 ,  mn(4)z(&t/A*)-l, while for #= l ,  
ni,(4)=n. Hence 

m.(4)2(4n/A 9- 1, 0 < 4 < 1, 

= n, 4=1, 

so that m,(4)+w as n+m, O<dSl, establishing (3). 

Next, by the martingale property (a.l), 

.f Z:(n) -s i@) = CZ:(n) - E(z:(n))l 
,=1 I =  1 

so that 

I -  

I 

Since t u  ti 5 1, it follows from (a.4) that (4) holds. 

largest index such that s i (n)s4 .  Hence 
To see that ( 5 )  is also valid, note that ~ i ~ , , ) + ~ ( n ) > d ~ ,  since m,(& is the 
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so that 

AoO.)/n > 4 - s:",+,(n) 2 0, 

which implies that s ~ m ~ + l ( n ) + ~  as n - a .  As noted above, (1) now follows 
from (3)45), with m replaced by ~ " ( 4 )  in (4). It then follows from Scott's 
(1973) Theorem 2 that S,(n).?.N(O, I) for any 2.. Hence from 2c4(xi) of Rao 
(1973), it follows that 

n-* Q:.E,AN(o,I,,). Q.E.D. 
L =  1 
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MULTIPLE MODEL TESTlNG FOR NON-NESTED 
HETEROSKEDASTIC CENSORED REGRESSION MODELS 

Marlene A. SMITH and G. S. MADDALA 
University o/Florida, Gainesville, FL32611, USA 

1. Introduction 

Applied econometric research is often characterized by the search for a 
‘suitable’ model describing an economic relationship. Misspecification is 
frequently determined by the outcome of estimated t-ratios, or the decision to 
include exogenous variables is based on minimum mean square error, In 
order to assure that the selected model satisfies the classical assumptions, 
residuals may be tested for heteroskedastic or autoconelated behavior. 
Furthermore, some measure of goodness of fit is employed to compare 
competing models. 

Perhaps the comments of Pesaran (1974, p. 154) best characterize the use 
of such techniques in economic analysis: 

‘There is no theoretical justification for expecting a correctly specified 
model to possess all the characteristics of the classical regression models. 
The assumptions underlying the classical regression models are made, 
not because they are optimal from the point of view of economic theory, 
but because they are extremely convenient for estimation and hypothesis 
testing purposes . . . Consequently, it seems more appropriate to treat 
the problem of choosing among alternative models as an hypothesis 
testing problem rather than as an arbitrary definition of what a “true 
model” should be.’ 

Several model selection criteria have recently been suggested which address 
these criticisms [see Sawyer (1980) for a survey]. Separate criteria 
demonstrate considerable flexibility in their ability to distinguish among 
models of different dimension, distributional specification, and functional 
form of the dependent and independent variables. As an example, an 
asymmetrical test was originally proposed by Cox (1961, 1962), and later 
applied to regression problems by Pesaran (1974). The Cox test of the null 
hypothesis is defined to be 

CY 
5. 

of 

)n 
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where LAC?) is the loglikelihood of the null model (H,) evaluated at its 
maximum likelihood estimators (i), L$) is the loglikelihood of the alterna- 
tive model (H,) evaluated at its MLE (B), and Ei refers to the asymptotic 
expectation under the null model when 1 is evaluated at its MLE. As an 
interpretation, the test compares the loglikelihood ratio of the competing 
models to their expected values when constrained to the theoretical values 
under the null hypothesis. The joint test of T, and 

T,  = L,O - LA4 - &CL,(B) - LJ(@I 

yields nine possible outcomes, including the rejection or acceptance of both 
models. That is, the Cox test, like most separate criteria, may not give an 
absolute ranking to competing models (as would, for example, an R2 or 
likelihood ratio test). Pesaran and Deaton (1978) extend the results to non- 
linear, multivariate regression models. 

Many of the separate criteria applied to non-nested models, such as the 
tests suggested by Cox are constrained to binary comparisons of competing 
models. A natural evolution in the econometric literature has been the 
development of multiple model selection criteria. This is the emphasis of the 
work by Davidson and MacKinnon (1981) and Sawyer (1980). Specifically, 
Sawyer develops the multiple model equivalent of the Cox test. Furthermore, 
simulation results conducted there indicate that joint tests of all models 
under consideration are more powerful than pairwise comparisons when the 
competing models are sufficiently disparate. Thus, in the choice among 
several separate hypotheses, one would expect that the probability of 
selecting the 'true' model is enhanced by the use of a multiple model 
criterion. 

This paper investigates the applicability of multiple model selection in 
censored regression models characterized by a heteroskedastic disturbance 
structure. Smith (1982) derived the Cox test for the Tobit model with 
spherical error terms. However, the Cox test is intractable for the 
heteroskedastic limited variable model. Therefore, we rely on the linear 
embedding procedures suggested by Davidson and MacKinnon. Section 2 
discusses the heteroskedastic Tobit model. Section 3 contains a description of 
the artificially-embedded procedures for the non-linear regression model. In 
section 4 we consider an empirical study of the demand for demand deposits. 
that motivated the current discussion. We present there the results of the J 
test for model selection. The final section gives an interpretation of the 
results as well as a discussion of the problems arising from multiple model 
testing. 

2. The heteroskedastic Tobit model 

The statistical properties of a censored heteroskedastic regression model 
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are discussed in Fishe, Maddala and Trost (1979). Specifically, it is shown 
that ignoring heteroskedasticity in the Tobit model will yield inconsistent 
estimates of the unknown parameters. 

Fishe et ai. provide an estimator for the Tobit model based on the 
procedure of Rutemiller and Bowers (1968). Consider the model 

K=XiBO+Uoi  if RHS>O, 

=O otherwise, 

where it is assumed that 

Uoi-IN(O, u&), &=(a, +a1XJ2 .  

Here, X i  is some subset of the Xi variables in (1). Within this specification of 
the variance, an appropriate test for al=O is used to detect the presence of 
heteroskedasticity. The estimation of Bo, a,, and a I  requires the use of a non- 
linear maximization technique. More specifically, the loglikelihood function 
of (1) can be written as' 

where 
xao~.o+~lTyi)-' 

F. = 5 (l/m) exp [ - t2/2] dt. 
-m 

E, and Ez refer to summation over observations for which Y , > O  and x = O ,  
respectively. The likelihood equations are 
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These equations are solved iteratively using the Berndt et al. (1974) method 
to give the ML estimates of the different parameters. 

3. Artificial embedding procedures for model selection 

The artificial embedding procedures involve combining the non-nested 
models under consideration into a comprehensive model by introducing an 
artificial ernbedding parameter. Estimation and hypothesis testing of the 
embedding parameter serve as the selection criterion. Within this general 
framework, there are obviously many different ways to construct the model. 
The emphasis of many of the artificial embedding procedures has been the 
construction of comprehensive models which permit straightforward 
identification of the distribution and statistical properties of the embedding 
parameter. 

Davidson and MacKinnon (1981) design a series of linear embedding 
procedures which may be applied to linear, or non-linear, non-nested models. 
They have the advantage of being computationally simple, and are easily 
extended to multiple model testing. Consider the situation of two non-nested, 
non-linear models, 

H o :  FIXa, Z, -N(fi(X,, Bo), u;) for some bo in B, 

H,: l$Y,, Zi-N(gAZ,, yo), u:) for some yo in f, 

(3) 

(4) 

where I: is the vector of explanatory variables, Xi and Zi are non-stochastic 
vectors of explanatory variables under H ,  and HI, respectively, and bo and 
yo are unknown parameters, 

Davidson and MacKinnon suggest the comprehensive model 

E; = (1 -i)fi+ ig, + U,. (5)  

Here ,i serves as the artificial embedding parameter, and the arguments of 
fi(Xi,po) and gi(Zi,y0) have been suppressed for brevity. The test for A = O  is 
the test for the truth of H,. However, i. is not identified, and no inferences 
can be drawn from the estimation of (5). Three procedures are suggested the 
J test, the P test and the C test. Since we will be using only the J test in the 
subsequent work. we will omit the discussion of the P test and the C test. 
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by its maximum likelihood The J fesf requires the substitution of 
estimator (6,). The comprehensive model then becomes 

K=(l  - i ) f i + ig ;+  u:, (6)  

where g;=gdZ,,?,). f, will be independent of Ur as the sample size increases. 
Thus, it is theoretically correct to perform an asymptotic f test on the 
estimated value of i. The J test is computationally simple to perform with 
conventional software packages when H, is linear. The steps required are: 

(i) compute the maximum likelihood estimator of B, in HI, 

(i) substitute the predicted values, gi, into ( 5 )  and obtain estimates of j., 

(iii) test for the truth of Ha using an asymptotic t test or likelihood ratio 
test. 

It is tempting to test I.= 1 in the comprehensive model as an indication of 
the truth of H,. However, Davidson and MacKinnon show that this test 
lacks power, since the t statistics generated from (6) are valid only when H, 
is true. Thus, it is suggested that the roles of Ha and H, be reversed. For 
example, the J test for H, should be computed from 

K=( l - ; . )g i+ iA+  u:. (7) 

When neither H ,  nor H, is true, it will be possible to reject both hypotheses. 
Finally, the linear embedding procedures easily generalize to simultaneous 

multiple model selection. For m alternative models, construct 

This is the multiple model generalization of the J test, where the joint test 
of i , = O  is appropriate. The likelihood ratio test is employed which will be 
asymptotically chi-squared distributed with m degrees of freedom. 

The computational simplicity of the artificial embedding technique 
becomes a major advantage over the Cox test in the presence of models 
characterized by complicated likelihood functions. As an illustration, the 
following section presents an empirical application of the multiple model J 
test to the heteroskedastic Tobit model. We investigate the following m non- 
nested models: 

Hj:X=XrrBr+Uji if RHS>O, i = l , 2  ,..., N, 

=O otherwise, j = l , 2  ,..., m, 
(9) 
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where 
2 

uji - IN(0, ofi), u;i = ( m j o  + ajlZi) . 

Note that we assume that the variables that affect the variance are the same 
in all the models though the explanatory variables X j i  in (9) differ. The 
comprehensive model for testing the kth model against all others can be 
written as 

= O  otherwise. 

Because of the assumptions in (IO), will be IN(O,&) where u:i is a linear 
function of Zi. 

Here pj refer to the heteroskedastic Tobit estimates obtained from (9) 
individually and, as before, i j  refer to the embedding parameters. We will use 

(12) 

as the test statistic. Here YO) and L(J are the maximised loglikelihood 
values of (9) and (ll), respectively. This statistic will have a chi-square 
distribution with rn degrees of freedom.' 

2 In [U4 - U0)l 

4. The demand for demand deposits: An illustration 

We will illustrate the application of the J test to the heteroskedastic Tobit 
model with a problem in the estimation of demand for money. Previous 
studies based on time series estimation of the role of wealth (in a portfolio 
sense) and income (in a transactions sense) in the money demand schedule 
yield conflicting results. This may be due to the high collinearity of the 
aggregate measures of wealth and income available for time series estimation. 
In order to investigate this proposition, a cross-sectional data set is used in a 
heteroskedastic Tobit model. The data used are the Projector and Weiss 
(1966) sample of household dataZ collected as of December 31, 1962. The 
sample purposely contains a disproportionately large percentage of wealthy 

'An anonymous referee pointed out that if u;, in (IO) IS defined as u~=~z,o+z,,Z,Jz then the 
vanana of u:, in the comprehensive model ( 1 1 )  would be &Z,,)'. For the purpose of 
this study, however. the spatication of the variance we have used IS appropnate. The residual 
vanance in all models IS assumed to be a function of inwme and wealth 

*We are grateful to our colleagues William Bomberger and David Denslow for provtding us 
with these data 
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households. Thus, all observations in which wealth exceeds S1 million are 
excluded from this study. Demand deposits (DEM) are used as the dependent 
variable (cash holdings are unavailable), where approximately 250, of the 
households reported non-positive demand deposits. Income represents pretax 
income during 1962. The total sample size is 1884. 

Whereas economic theory gives strong arguments for the inclusion of 
wealth and income, little is known about the role played by personal and 
occupationed characteristics in the demand for money. Furthermore. there is 
incomplete theoretical evidence about the appropriate functional form. For 
this reason we will use the J test for the selection of a 'best' model. Five 
models were chosen in various combinations for this purpose. Consider 

Hj:DEM, = u, + a1 WEALTH,+ u,INCOME, + rJ j i  + Uj i  

= 0, (13) 

for j =  1,. . ., 5 and i =  1,. . , , N .  Here, DEMi denotes the demand deposits held 
by the ith household (similarly for INCOME, and WEALTH,), and Z j  refers 
to the remaining exogenous variables chosen for the jth model. It is further 
assumed the Uj, -IN(O, u;,), where 

~ j i =  Bo + B1j  WEALTH, + BZjINCOME,. (14) 

The exogenous variables in Z j  are listed below for each model: 

Model Z ,  

HI  BINHT, 
H* w;, Y : , ( W . Y ) ,  
H3 D O C C I ,  DOCCZ,, DOCC3,. DOCC4i 
H4 

HS 
SINGLE,, BLACK,,  SIZE,, AGE,, AGE: 
AGE,, CI T x, E D ,  FEMALE, 

W:,  Y: and ( W -  Y), are polynomial expressions for wealth and income. 

Furthermore, 

BIHN'I; if inheritances were a substantial portion of assets, 
if little or no assets were inherited; 

DOCCJ, = 1  if occupation of head of household, is self- 
employment, 

= 1 
=O 

=O otherwise; 
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DUCCZ, = 1  
=O 

DUCC3i = I  
= O  

DUCC4, = 1  
= O  

SINGLE, = I  
= O  

BLACK, = I  
=O 
- SIZEi - 

AGE, - 
AGE: - 

- 

- 
CITK = 3  

=2 
= I  
=O 

FEMALE, = 1 
=O 

- ED, - 

if head of household, is retired, 
otherwise; 
if head of household, did not work, 
otherwise; 
if occupation of head of household, is farm worker, 
otherwise; 
if head of household, is not married, 
otherwise; 
if head of household, is black, 
otherwise; 
number of members in household,; 
age of head of household,; 
AGEi squared 
if size of place, exceeds l,OOO,OOO, 
if size of place, includes 250,000 to l,000,OOO, 
if size of place, is less than 250,000, 
if household, is outside an urban area; 
years of education of head of household,; 
if head of household, is female, 
otherwise. 

Table 1 
Heteroskedastic Tobit estimates.' 

H, H ,  H* H J  

- 
HI 

CONSTANT - 125.010 -48.924 - 114.892 - 154.135 - 17.588 

WEALTH 0.0 I7 0.017 0.016 0.015 0.014 

INCOME 0.031 0.03 1 0.037 0.045 0.026 

(39.2390) (39.8278) (40.0977) (39.4066) (39.7652) 

(0.0023) (0.0025) (0.0023) (0.0023) (0.0023) 

(0.0059) (0.0059) (0.0063) (0.0058) (0.0062) 

a 

CONSTANT 245.097 242256 248.808 250.560 243.175 

WEALTH 0.030 0.030 0.030 0.030 0.030 

INCOME 0.0 16 0.0 1 5 0.015 0.013 0.013 

UOI -13423.82 -13415.97 -13418.81 -13399.15 -13383.75 

un - 13371.13 -13369.61 - 13364.48 - 13374.80 - 13343.02 

(6.6078) (6.3490) (6.6600) (6.8564) (6.7145) 

(0.W) ( 0 . W )  (0.0004 (0.00W (0.0004 

(0.ooo8, (0.0008) (0.MW (0.0011) (0.0012) 

*N= 1884: standard errors in parentheses. 

I 

I 

1 

1 

I 

1 

1. 

I 

- 

1 
\ 

1 

C 

I 



M.A. Sm.th and G.S. Maddala, Mulriple model resting 79 

Table 1 (continued) 
Personal characteristics.' 

~~ 

HI H2 H 3  H4 H, 

(0.11 15) 
BINHT 0.148 

W2 - 1.995 
(15.417) 

Y' 69354 
(7.065) 

W . Y  -27.161 
(37.994) 

DOCCl 0.300 
(0.058) 

DOCC2 

DOCC3 

DOCCQ 

SINGLE 

BLACK 

SIZE 

AGE 

AGE' 

CITY 

ED 

FEMALE 

0.1064 
(0.200) 

0.105 
(0.262) 

0 .W 
(0.172) 

- 0.044 
(0.086) 

- 1.845 
(1.460) 
-0.033 

(0.016) 

-0.381 
(0.125) 

0247 
(0.06O) 

0.126 
(0.020) 

-0.006 
(0.024) 

0.0467 
(0.061) 

-0.193 
(0.141) 

~ 

'N= 1884; standard errors in parentheses 

A brief justification of the decision to construct these models is necessary. 
H ,  suggests that wealth, income, and inheritance affect demand deposits, 
where no reference is made to personal or occupational characteristics. H2 
investigates non-iinearities in wealth and income. The remaining models are 
constructed so as to isolate occupational and personal characteristics. Thus, 
H ,  hypothesizes that occupational characteristics are of primary importance; 
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H,, personal characteristics. H5 is constructed to include educational and 
personal characteristics. 

Table I presents the estimation results. For each model, the regression 
coefficients from (13) are given, where the numbers in parentheses are 
estimated standard errors. L(0) represents the maximized likelihood value of 
(13), and similarly L(i) corresponds to the maximum likelihood of the 
embedded model shown in (I l).3 

The results show that wealth and income are both significant, and the 
hypothesis of homoskedasticity must be rejected. Furthermore, most of the 
personal and occupational characteristics are insignificant. The results of the 
J test, however, are somewhat surprising. When each model is tested against 
the remaining four simultaneously, twice the difference of L.(;).and YO) will 
be asymptotically distributed as chi-squared if the model being tested is true. 
Assuming a significance level of 5% [1&(4)= 14.861, all models under 
consideration must be rejected! 

Let us first look at the results of each individual model. There is 
convincing evidence of heteroskedasticity in the residuals. Further, both the 
income and wealth coefficients are not only significant but also of plausible 
magnitudes. In addition all variables that are included in the Z j  set that are 
significant have the correct signs. Thus, anyone estimating only one of these 
models would find the model satisfactory. 

However. when it comes to the problem of choosing the ‘best’ model, it is 
a different story. The criteria of model selection used here have the ability to 
reject or accept all models under consideration. In applied analysis, the 
researcher would hope to isolate an optimal model for predictive and 
inferential purposes. The tests we have performed have rejected all models. 
This result can be interpreted in several ways. One interpretation is that 
none of the models considered can be regarded as being consistent with the 
way in which the data were generated. This, however, is not a satisfactory 
interpretation in view of the results mentioned earlier. A more. reasonable 
interpretation is that none of the models can be chosen in preference to the 
others because each of them has some important omitted variables. In fact, 
the results seem to suggest that a model in which the Z j  set includes Y’, 
DOCCI. DOCC4. AGE, AGE’ and ED may be appropriate. There are strong 
arguments for the inclusion of these variables (though we arrived at this 
conclusion after testing each of the five models against the others and 
looking at the results), Y z  captures the non-linearity of the income effects. 
DOCCl and D O C 0  are included on the grounds that self-employed persons 
and farm workers need to hold higher cash balances. AGE and AGE’ are 
included on the grounds that persons in their middle age hold higher cash 

’The heteroskedastic Tobit algorithm by Fbhe and Trost [which uses the Berndt et al. (1974) 
method] was used in the computations 
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balances than those at lower age (lower wealth effect) and higher age (lower 
transaction effe~t) .~ 

In summary, the multiple model selection criteria are useful in choosing 
between different non-nested non-linear models. The paper illustrates the use 
of heteroskedastic Tobit models with an important application to the 
problem of measuring income and wealth effecfs in the demand for money 
and also how to interpret the results when the multiple model selection 
criteria reject all models. 

4An alternative explanation for the fad that all models have been rejected is that the! are not 
really very different from each other. Sawyer and Davidson and MacKinnon point out that this 
is possible when the models under consideration are too similar. 
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